Approximating the largest eigenvalue of network adjacency matrices.

نویسندگان

  • Juan G Restrepo
  • Edward Ott
  • Brian R Hunt
چکیده

The largest eigenvalue of the adjacency matrix of a network plays an important role in several network processes (e.g., synchronization of oscillators, percolation on directed networks, and linear stability of equilibria of network coupled systems). In this paper we develop approximations to the largest eigenvalue of adjacency matrices and discuss the relationships between these approximations. Numerical experiments on simulated networks are used to test our results.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Approximating the Largest Eigenvalue via Powering and the Lanczos method

Notation: λ1(A) = largest eigenvalue of A. Motivation: The largest eigenvalue tells us the spectrum of a matrix and thus can be somewhat useful. More crucially for the adjacency matrix of a graph, we know exactly that the all one’s vector is the largest eigenvector, and thus by working orthogonal to this vector we can approximate the second largest eigenvalue of the graph, which tells us how we...

متن کامل

Balanced condition in networks leads to Weibull statistics

The importance of the balance in inhibitory and excitatory couplings in the brain has increasingly been realized. Despite the key role played by inhibitory-excitatory couplings in the functioning of brain networks, the impact of a balanced condition on the stability properties of underlying networks remains largely unknown. We investigate properties of the largest eigenvalues of networks having...

متن کامل

A tight bound of the largest eigenvalue of sparse random graph

We analyze the largest eigenvalue and eigenvector for the adjacency matrices of sparse random graph. Let λ1 be the largest eigenvalue of an n-vertex graph, and v1 be its corresponding normalized eigenvector. For graphs of average degree d log n, where d is a large enough constant, we show λ1 = d log n + 1 ± o(1) and 〈1, v1〉 = √ n ( 1−Θ ( 1 logn )) . It shows a limitation of the existing method ...

متن کامل

Eigenvalues of graphs

2 Eigenvalues of graphs 5 2.1 Matrices associated with graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.2 The largest eigenvalue . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 2.2.1 Adjacency matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 2.2.2 Laplacian . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.2.3...

متن کامل

The Tracy–Widom law for some sparse random matrices

Consider the random matrix obtained from the adjacency matrix of a random d-regular graph by multiplying every entry by a random sign. The largest eigenvalue converges, after proper scaling, to the Tracy–Widom distribution.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Physical review. E, Statistical, nonlinear, and soft matter physics

دوره 76 5 Pt 2  شماره 

صفحات  -

تاریخ انتشار 2007